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ABSTRACT

Multistate Coherent Systems.

Th~ vast najority of reliability analyses assume that components and system
zve in either of two states: functioning or failed. The present paper develoup:
rasic theory for the study of systcms of components in which any of a finite
wmber of states may occur, representing at one extreme perfect functioning anc
<t the other extremes complete failure. We lay down axioms extending the stendar:
wtion of a coherent system to the new notion of a nultistate coherent system.
“cr such systems we obtain deterministic and probabilistic properties for syster
cexformance which are analogous to well known results for coherent system

coliability.
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Multistate Coherent Systems.

1. Introduction and Summary.

A central problem in reliability theory is to determine the relationship
between the reliability of a complex system and the reliabilities of its com-
ponents. Thus far, in practically all treatments of this problem, the system
and its components are considered to be in either of two states: functioning
(denoted by 1) and failed (denoted by 0). The theory of binary coherent struc-
tures has served as a unifying foundation for a mathematical and statistical
theory of reliability for this dichotomous case. In fact, fairly complete
solutions of various aspects of this problem have been obtained by Birnbaum,
Esary, Saunders, Marshall, Barlow, and Proschan. See, for example, [1], [3],
(4], (5], [6], and [7].

In many real life situations, however, the systems and their components
are capable of assuming a whole range of levels of performance, varying from
perfect functioning (denoted by level M, say) to complete failure (denoted by
0). In these situations, the dichotomous model is an oversimplification of the
actual situation, and so models representing multistate systems and multistate
components are much more useful in describing the performance of these systems
in terms of the performance of their components.

Unfortunately, very little work has been done on this more general problem
of multistate systems. Among the earlier papers treating aspects of multistate
systems sre (8], [9]), [10], [11], [13], and [14]). With the exception of [10],
and [11], these papers deal mainly with models for cannibalization, and barely
touch on the performance of systems and components assuming more than two states.
More recent and more sophisticated work on multistate systems has been performed
by Barlow [2] and Ross [12]; however, their models are more specialized than ours,

as we shall see.
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The main purpose of the present paper is to develop an adequate general model
and theory for the case in which both systems and components may assume any of an
ordered set of states, say 0, 1, 2, ..., M; this theory generalizes coherent
structure' theory. We develop the concept of a multistate coherent structure as
a generalization of the well known binary coherent structure. We then use this con-
cept as a unifying foundation for the study of the relationship between the per-
formance of a system and the performance of the components in the system. In
forthcoming papers, we shall present treatments of various stochastic aspects
of multistate systems with the aim of ultimately achieving a comprehensive theory
analogous to coherent structure theory in the binary case (see [1]).

We now summarize the contents of this paper. Our formulation and treatment
are similar to that of Barlow and Proschan [1] for the two state case. In
Section 2 we present the notation and terminology used throughout the paper.

In Section 3 we consider a system of n components. For each component and for
the system itself, we can distinguish among say M + 1 states representing suc-
cessive levels of performance ranging from perfect functioning (level M) down to
complete failure (level 0). For component i, x; denotes the corresponding state
or performance level, i = 1, 2, ..., n; the vector X= (xl, e xn) denotes the
vector of states of components 1, ..., n. We assume that the state ¢ of the
system is a deterministic function of the states Xps sees X of the components.
Thus ¢ = ¢(x), where x takes values inS's = {0, 1, ..., M}, and ¢ takes values
in S. We define a multistate coherent structure as a natural generalization of

the standard concept of a binary coherent structure by requiring three reasonable

e

conditions that ¢ must satisfy.
% We then obtain deterministic relationships between the performance of a
system and the performance of its components; these relationships are natural

generalizations of well known results in the binary case. Thus we show that the




performance of a multistate coherent system is bounded below by the performance
of a series system and bounded above by the performance of a parallel system.

We next present a decomposition identity useful in deriving inductive proofs and
probabilistic properties for systems. Finally, we generalize the practical
result that redundancy at the component level is better than redundancy at the
systea level.

In Section 4 we investigate the probabilistic aspects of multistate coherent
systems. We relate in a probabilistic sense the performance of the system to the
performance of its components, assumed statistically independent. Next the
decomposition identity of Section 3 is used to obtain a corresponding decompo-
sition identity for the performance function of the system. This decomposition
identity is then used to show that system performance is a monotone increasing

function of component performances. W: erd the section by obtaining bounds on

system performance.

Finally, in Section 5 we study some dynamic aspects of multistate coherent
systems. In earlier sections, we tacitly assume that time is fixed. In Section
S we consider multistate coherent systems as operating over time. At time 0
the system and each of its components are in state M(corresponding to perfect
functioning). As time passes, the performance level of components (and conse-
quently of the system) deteriorates to lower levels until finally level 0 (com-
plete failure) is reached. We define the concepts of IFRA and NBU stochastic
processes introduced by Ross [12]. We present a different definition for an
NBU stochastic process, and prove the analogue of the NBU closure theorem using

a new characterization of the NBU property.




2. Notation and Terminology.

The vector x = (xl, iy xn) denotes the vector of states of components
1, «ee, M.

S={0, 1, ..., M} denotes the set of possible states of both components
and systems.

C={1, 2, ..., n} denotes the set of component indices.

(ji' Xx) = (xl, sees X 10 i, Xie]? ***» xn), where j =0, 1, ..., M.

('i' Xx) = (xl, ceen Xp 10 ts Xygs eee xn).

1=20,13, ..., 7).

z<§_nm3yisxi fori=1, ..., n, amlyi<xi for some i.

x vV y denotes max(x, y).

Xvys (x1 v Yyr cees X v yn).

X A y denotes min(x, y).

XAyS= (x1 AYps coes X A yn).

"increasing' is used in place of '"nondecreasing', and "decreasing'is used in
place of "nonincreasing'.

wWhen we say f(xl, v o3 xn) is increasing we mean f is increasing in each

argument.
Given a univariate distribution F, its complement 1-F is denoted by F.




3. Deterministic Properties of Multistate Coherent Systems.

Consider a system of n components. We assume that for both the system and
its corcnents we can distinguish among 2 finite number of distinct states rep-
resenting various levels of performance, ranging from perfect functioning (state
M) to complete failure (state 0). As time passes a component, starting in state
M, deteriorates and enters state M-1, deteriorates further entering state M-2,
ctc., until ultimately it descends to state 0; a similar succession of decreasing
state levels describes the system progression over time. (In a later paper, we
consider the case of a continuous range of performance levels varying over the
interval [0, 1].)

The performance X; of componcat i assumes a valuz in the set S = {0, 1, ..., M}.
Ve assume that the performance of the system depends deterministically on the
performance of each of the components. Thus the state of the system is determined
“y a function ¢: s" » 5. Given x, the vecter of component states, we may deter-

mine ¢(x), the system state. The function ¢ is called the structure function of

the system.

The structure function ¢ satisfies certain conditions that represent intui-
tively reasonable properties of systems encouantered in rractice. In the binary
case the following two conditions are required for a system to be a coherent
structure ([1], Def. 2.1, p. 6):

(i). The function ¢(x) is increasing.

(ii). Each component is relevant to the system; i.e., for each i there
exists a vector ('i’ x) such that 0(11, x) > Q(Oi, x). This means that the
function ¢ is not constant in the 1th argument, i = 1, ..., n,

Condition (i) embodies the reasonable assumption that improving the per-
formance of . component is not harmful to system performance. Condition (ii)

eliminates from consideration components which have no effect on system performance.

I T PR ey gy m . R




In our present multistate model, we stipulate three conditions:

Definition 3.1. A system of n components is said to be a multistate coherent

system (MCS) if its structure function ¢ satisfies:

(1)'. ¢ is increasing.

(ii)'. For level j of component i, there exists a vector ('i’ X) such that
.(ji’ Xx) = j while o(;,i, x)#jforg =j,i=1, ..., nand j=0,1, ..., M.

(iii)'. ¢() =j for j =0, 1, ..., M,

Note that conditions (i)' and (ii)' generalize conditions (i) and (ii) in
the binary case. Condition (iii)' is automatically satisfied in the binary case,
but is not implied in the present multistate case by (i)' and (ii)’.

Some examples of MCS's are:

Example 3.1. A series system: ¢(x) = min x..

1

1€isn
Example 3.2. A parallel system: ¢(x) = max X, .
1<i<n

Example 3.3. A k-out-of-n structure: ¢(x) = x(n-kol)’ where x(l) b i x(n)

is an increasing rearrangement of Kys voey Xoo

Example 3.4. Let Pl' Koy Pr be nonempty subsets of C = {1, ..., n} such
that 1!21?1 =Cand P, Pys i35, Let ¢(x) = l-smx min x,. Then ¢(x) is a

jsr 1:Pj
MCS, and Pl, sévp Pr are called its min path sets.

Remark 3.1. The structures in Examples 3.1, 3.2, and 3.3 are natural gener-
alizations of familiar basic structures in the binary case. They constitute
special cases of the structure in Example 3.4, which in the binary case defines
the most general binary coherent structure ([1), Chap. 1). The structure function
of Example 3.4 is due to Barlow {2]. Since the structure functions of Example 3.4
satisfy conditions (i)', (ii)', and (iii)' of Definition 3.1, they constitute a




subclass of our MCS class. .By;q§?m;ping some special cases it is easy to:'see’
that the class in Example 3.4 is acégally a small subclass of our MCS. For
instance, for a two componeq; gystem, Example 3.4 yields only two systems: the
parallel system and;Phq'gpxies system. However for S = {0, 1, 2} there are
more than 12 MCS's.

In the remainder of this section we investigate the structural properties
of the IICS. We extend results obtained in the binary case ([1], Chap. 1) to
the more general multistate case.

The following lemma gives a decomposition identity useful in carrying out

inductive proofs. It holds for any multistate structure, not just for the MCS.

Lemma 3.1. The following identity holds for any n-component structure

function ¢.

M
(3.1) ¢(x) = jzo 0G;, X z[xi”j] for i =, ..., %,
where

1 if xi-j

I iq 2
[x;=i]
0 if x. = j.
i
The proof is obvious and therefore omitted.
The following theorem gives simple bounds on MCS performance.
Theorem 3.1. Let ¢ be the structure function of an MCS of n components.

(3.2) min X, S $(x) £ max X;.
1sisn 1€i<n




Proof. Let m = max X . Then ¢(x) < ¢(m) by the monotonicity of ¢. By
condition (iii)' of Diifsg.l, ¢(m) = m. The upper bound follows.

The proof establishing the lower bound is similar. ||

Theorem 3.1 states that a parallel system yields the best performance of
an MCS, and a sevies system yields the worst performance. Using this theorem,
we will show similar probabilistic bounds in Section 4.

As in the binary case, we may define a dual structure for each multistate

structure.

Definition 3.2. Let ¢ be the structure function of a multistate system.

The dual structure function ¢D is given by:

D
(3.3) ¢ (x) =M-¢M - xl, sany M = xn).
It is easy to verify that the dual of an MCS is an MCS.

Example 3.5. The dual of a series (parallel) system is a parallel (series)
system. More generally, the dual of a k-out-of-n system is an (n - k + 1)-out-of-n
system.

Design engineers have used the well known principle that redundancy at the
component level is prz2ferable to redundancy at the system level (all other
things being equal). We present this principle in mathematical form along with

a proof for MCS's,

Theorem 3.2. Let ¢ be the structure function of an MCS. Then

1). exvy 2¢(x veQ.

(). e(x Ay <¢(x) A o(p.




Equality holds in (i) for all x and y if and only if the structure is parallel.
Equality holds in (ii) for all x and y if and only if the structure is series.

Proof. (i). X5 VY 2 X i=1, ..., n. Thus ¢(x v y) 2 ¢(x) s?pce'p
is increasing;‘ Si;ilarly, é(i_v y) 2 ¢iz). It follows that ¢(x v xjté :
max[¢(x), ¢(¥)] = ¢(x) v ¢(y).

(ii). A similar argument proves (ii).

If the structure is parallel (series), then equality in (i) ((ii)) is
readily established.

Next assume ¢(x vV y) = ¢(x) vV ¢(y) for all x and y. For each i, j, there
exists (-i, x) such that o(ji, X) = j and ¢(xi, x) < j when x; < y S [N 3 [P ||
and j =0, 1, ..., M (by (ii)' of Def. 3.1). Since (ji’ Xx) = (ji’ 0) v (Oi, x),
we have j = ¢(ji, 0) = ¢(ji, 0) v 0(01, x). It follows that ¢(J'i, 0) = j for
» T PR and‘5 =0,1, ..., M. Now ¢(x) = ¢(xl, 0, ..., 0) v ¢(0, X, 0, <oty 0)
Veesv 6(0, 0, ..., X)) = X; VX, VeeoV x_ = max Xx.. Therefore ¢ is a parallel

1<i<n
structure.

Finally, to prove necessity for equality in (ii), assume ¢(x A y) = o(x) A o(y)
for all x and y. Let QD be the dual MCS of ¢. It is easy to show that QD(§_v y) =
00(5) v QD(z) for all x and y. Hence by (i), ¢D is a parallel structure. Therefore
¢ is a series structure. ||

In binary coherent structure theory, the concepts of minimal path vectors
and minimal cut vectors play a crucial role. The analogue in MCS theory is the

concept of critical connection vectors. Using this concept we can represent the

state of a MCS in terms of its critical connection vectors.

Definition 3.3. A vector x is said to be a connection vector to level j if

¢(x) =j,i=0,1, ..., M.
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Definition 3.4. A vector x is said to be an upper ‘ critical connection

vector to level j if ¢(x) = j and y < x-implies ¢(y) <‘j, o SRR RS

Similarly, we can define a lower connection vector to level j, j =0, 1, ;..,
M-1.

The existence of such critical connection vectors is guaranteed by the
conditions of Definition 3.1.

Let x be an upper critical connection vectof to level j. Define Cj(f) =
{i: X, 2 j}. Obviously Cj(§) is a non-empty subset of C = {1, ..., n}. For
July csas M, Yet Cj = {Cj(x): x is an upper critical connection vector to
level j}. Then the following lemma shows that Cj enjoys a property similar to

that enjoyed by the minim2l path sets and the minimal cut sets in the binary case.

Lemma 3.2. For j =1, ..., M,

i). UCj w { Y 2y e asy Dk

(ii). If A and B are two different members of cj, then A $ B,

The proof follows readily from Def. 2.1 and henrc is omitted.

For j =1, ..., M, let 12t xg. be the upper critical connection vectors
to level j, where zi = (y{r. e o yir).J The folloving theorem, stated without
proof, enables us to determinz the state of an MCS using its upper critical
connection vectors.

Theorem 3.3. Let ¢ be the structure function of an MCS. Let zi, RERRES !15

be its upper critical connection vectors to level j, j =1, ..., M. Then

(3.4) $(x) 23

if and only if x 2 zi for some &, 1 S & < "j'
Theorem 3.3 is used in Section 4 to establish bounds on the system performance

function.
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4. Stochastic Performance of Multistate Coherent Systems.

In Section 3 we discussed deterministic aspects of MCS's. In this section,
we determine the relationship between the stochastic performance of the
system and the stochastic performances of its components. We also obtain bounds
on system performance which are particularly useful when exact system performance
is difficult to evaluate.

Let xi denote the random state of component i, with

4.1)
PLX, s ] = P, (),

j=0,1, ..., Mand i = 1, ...,'n. Pi represents the performance distribution

of component i. Clearly,

P.(j) = Piyo»
i kio ik

M
QM'g“h‘h
for i=1, ..., n.
Let X = (xl. P xn) be the random vector representing the states of
components 1, ..., n, where the xl, “wkip xn are assumed to be statistically
mutually independent. Then ¢(X) is the random variable representing the system

state of the MCS having structure function ¢, with

P[’@ = j] = Pjp j=0,1, ..., M,

(4.2)

Pl¢X) s j) =P(), §=0,1, ..., M.

s 1 i e i G
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P represents the performance distribution of the system. Let h = E ¢(X);

we may express h as follows:

h = hn(Pl’ cees P,

since h is a function of the Pl’ et Pn‘ We may also express h alternatively:

h = hn‘(P_l. Eep 190 Eﬂ)'

where B; H (piO' Piys *oo» pm) for i =1, ..., n. In either case we call h the

performance function of the system. We shall omit the subscript on h when no confusion

will result.

The following identity expresses a system performance function of n components
in terms of system performance functions of n -~ 1 components.
Lemma 4.1. The following identity holds for h:
M1

(4.3)  h(Ry, Pyr cees By) ® jZo Pij hOjs Bys voos Bl i =1, oy m,

where h(ji; Bys Bps +oe» 911) = E O(ji. X) = E Q(Xl, 309 xi-l' ; ™ qu, P Xn).

Proof. By Lemma 3.1 and the mutual independence of the components, we have:
M

E¢(X) = J EI * E ¢@,, X).
X) se0. [Xy=3) i 0
Relation (4.3) follows immediately. ||

The following theorem shows that h is strictly increasing in each pij for j > 0.

Theorem 4.1. Let h(p,, ..., pa) be the performance function of an MCS. Let
0 < pu <]lfori=1, ..., nand j=0,1, ..., M. Then h(gl. “vvia gn) is strictly
increasing in Ptj’ i=1, ..., nand j =1, ..., M,

e RTINS o gl '
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M
Proof. From (4.3) and the fact that [ Pij = l,and i = 1, ..., n, we have
=0

j
M“ : R LT | : :
h(@ys +++» By) = j£1 Py; E8G;, X) - 604, X)].
Thus
g——f;ij S E[0Gy, 0 - 40, 01, i=1, o, nand§ =1, ., K

Since ¢ is increasing, E[¢(j;, X) - ¢(0;, X)] 2 0. In addition, ¢(j;, x°) -

¢(Oi,5?) > 0 for some (-,, 5?) since the structure is an MCS. Since 0 < Piy < 1

for all i and j, we have E[¢(ji, X) - ¢(Oi, X)] > 0. Thus the desired result
follows. ||

Next we obtain properties of h as a function of the Pl' saas Pn’ First we
show that h(Pl, T Pn) is monotone increasing with respect to stochastic ordering.
A similar result is proved by Barlow [2] for his subclass of MCS's (see Ex. 3.4).

OQur proof of the more general result is simpler.

Theorem 4.2. Let Pi, P{ be two possible performance distributions for com-
ponent i, i = 1, ..., n. Assume Pi(j) 2 P{(j) for j =0,1, ..., Mand i =1, ..., n.

Let P (P') be the corresponding system performance distribution. Then

(1). P(j) 2P'(j) for j =0, 1, ..., M,

(ii). h(Pl, ceey Pn) < h(Pi, cees Pﬁ).

| Proof. Let Xl, vy Xn(Xi, et X&) be mutually independent random

variables having distribution functions Pl’ EEPI Pn(Pi, Viig Pﬁ) respectively.

st
st & Xi.
Since ¢ is increasing, ¢(X) < $(X'). The desired results in (i) and (ii)

follow immediately. ||

Then for i = 1, ..., n, 91(j) 2 Pi(j) for j = 0, 1, ..., M implies that X

i i AR & s
e it v S
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Similarly, we relcte properties of P, the system performance distribution,
to properties of h, the system performghce function, or to properties of the

pij‘ As examples we state the following two straightforward results.

Lemma 4.2. Let h be the performance function and P be the performance

distribution of an MCS. Then

M-1
h= J§ P(j), where P(j) = 1 - P(j).
j=0

Proof. Since ¢(X) is a nonnegative integer valued random variable, then
«
Ze(X) = I P[¢(X) > j], yielding th> desired result. ||
=0

A decomposition identity is given in:
Theorem 4.3. Let ¢ be the structure function of a MCS. Then

1.4

S~/

M
NSRS L R T B R R AL . W
J-
Proof. By the law of total probability, we have:

M
Po(X) 2 2] = jzo Plo(X) 2 2|X; = j] P[X; = j].

5ince the components are mutually independent, (4.4) follows immediately. ||
Next we obtain bounds on both the system performance function and the

system performance distribution. Using Theorem 3.1, we establish:

Theorem 4.4. Let P be the performance distribution and h be the performance

function of an MCS. Let Pi be the e component performance distribution for

i‘l.ooo.no Mfo‘l’j-o.l..-.,u-l:

n n
W. 1P PP s1- 1 FU),
i=1 i=1
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M
as). } n P,(j-1) sh s Z [1 - n P, (G-1)].
j=1 i=1 j=1 i=1

Proof. (i). By Theorem 3.1 we have min X, < $(X) < max Xi. Since
1sisn 1<isn
12 cees Xn are mutually independent, (i) follows immediately.

M
(ii). We use the fact that h = J P[¢(X) 2 j] and the bounds on
=1

Ple(X) 2 j]. ||

Next we illustrate how we can use the upper critical connection vectors

X

to establish bounds on the system performance distribution P and consequently
on system performance function h. Let xi, i, zij be the upper critical

connections to level j, j =0, 1, ..., M. Let Aj denote the event that X 2 Zi

n
T E, i nj. By Theorem 3.3, it follows that P[¢(X) 2 j] = P[ Uj Ai].
r=]
Let S, =) P[A; 0 A, N +c=n A ]. By the inclusion-exclusion principle,
o 2 k
1511<12<...<1k5nj

n

j 3
Plo(X) 2 j] = kzl PR

Thus
n

Ple(X) 2 j] <8, = Z PlA_],

r=1
Plo(X) 28, - 5,,

and so on, constituting upper and lower bounds on P[¢(X) 2 j] = P(j-1) for

j=1, ..., n. Sincehs= f P[¢(X) 2 j], we automatically have upper and
j=1 '
lower bounds on h also. Note that P(Aj) . P[X 2 xi] = PIX, 2 y{r. g 5
, ‘(\(u)v

X 2yl ]e n PIX, 2y] ) for 1srs n, and j =1 M e o G s

piunt yi 1
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S. Dynamic Models for Multistate Coherent Systems.

In the last two sections, we have studied deterministic and probabilistic
properties of MCS's at a fixed point in time. Now we copsidor dynamic models,
i.e., models in which the state of the system and of its components vary over
time. At time 0, the system and each of its conﬁonents are in state M
(perfect functioning). As time passes, the performance of each component (and
consequently of the system itself) deteriorates to successively lower levels,
until ultimately failure occurs (level 0 is attained).

In the binary case, the length of time during which a component or
system functions is called the lifelength of the component or system; these
lifelengths are nonnegative random variables. The corresponding lifelength
distributions have been classified according to various notions of aging. See,
e.g., [1]. Two of the important classes of life distributions are the increasing
failure rate average (IFRA) clgss and the new better than used (NBU) class.
Closure of these classes under various basic reliability operations, such as
convolution of distributions and formation of binary coherent systems, are
investigated in [1]). In this section we investigate generalizations of these
useful concepts in the multistate case.

Let {xi(t). t 2 0} denote the stochastic process representing component stat i
at time t as t varies over the nonnegative real numbers, for i=1,...,n. The stochastic
process {¢(X(t)), t 2 0} represents the corresponding system state as t varies
from 0 to =, where X(t) = (xl(t). coep Xn(t)). We assume x1(0) =M,i=1, ..., n
We assume as before that components are mutually statistically independent;
thus the processes (xi(t). t20},i=1, ..., n, are also mutually independent.

Following Ross [12], we present:
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Definition 5.1. The stochastic process {Xi(t), t 2 0} is said to be an

IFRA process if Ti
1s svay M =%

inf(t: xi(t) < j} is an IFRA random variable for j = 0,

In a similar fashion we may define an IFRA process for the system:

{($(X(t)), t 2 0}. Note that in the iinary case, T

is simply the lifelength
of component i.

The following theorem is due to Ross [12].

Theorem 5.1. The Generalized IFRA Closure Theorem. Let {Xi(t), t 2 0},
i=1, ..., n, be independent IFRA processes and ¢ an increasing structure
function. Then {¢(X(t)), t 2 0} is an IFRA process.

We now give a definition for NBU stochastic processes different from the
one given by Ross [12]. We then derive a simple characterization for our NBU
stochastic processes. Using this characterization, we give a simple proof of

a generalized NBU closure theorem.

Definition 5.2. The stochastic process {xi(t), t 2 0} is an NBU stochastic

process if Ti is an NBU random variable for j =0, 1, ..., M - 1.

In a similar fashion we may define an NBU stochastic process {¢(X(t)),
t 2 0} for the system.

The following lemma gives a simple characterization for an NBU process
(as well as for an NBU random variable). We omit the simple proof.

Lemma 5.1. The stochastic process {X(t), t 2 0} is NBU if and only if
for all s 20 and t 2 0:

X(s + t) < min(X'(s), X'(¢)),
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where X'(s) and X'(t) are two independent random variables having the same
distributions as X(s) and X(t) respectively.

We may now prove the main result of this section.

Theorem 5.2. Let ¢ be the structure function of an MCS having n components.
Let {Xi(t), t20},i=1, ..., n, be independent NBU stochastic processes.

Then {¢(X(t)), t 2 0} is an NBU stochastic process.

Proof. For arbitrary fixed s 2 0 and t 2 0, let Xi(s), 1 S x;(s). Xi(t),
g XA(t) be mutually independent random variables having the same distribu-
tions as Xl(s), A xn(s), xl(t), 55%.» Xn(t) respectively. Since {xi(t), t 2 0}

is an NBU process, we have by Lemma 5.1:
st » b
xi(s +t) < min(xi(s), xi(t)), 18 ), i.ip N,
Since ¢ is increasing, it follows that
st
¢(X(s + t)) < ¢(min(X'(s), X'(z)).

By Theorem 3.2, ¢(min(X'(s), X'(t))) < min(¢(X'(s)), ¢(X'(t))). Thus ¢(X(s + t)) <
min(¢(X'(s)), ¢(X'(t))). Using Lemma 5.1 again, the desired result follows. ||

Remark 5.1. The useful characterization of Lemma 5.1 makes our proof of
the generalized NBU closure theorem in the binary case simpler than the proof

given in [1].
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